top
Please input keywords
Order
*Country
日本
アメリカ
中国
オーストラリア
シンガポール
イギリス
フランス
ドイツ
スイス
イタリア
カナダ
韓国
オランダ
ベルギー
スウェーデン
その他
*Province
*City
*Name
*Telephone
*Company
*Position
*Email
*Verification code
*Verification Code
B-hOX40/hOX40L mice
Strain Name
C57BL/6-Tnfrsf4tm1(TNFRSF4)Bcgen Tnfsf4tm1(TNFSF4)Bcgen/Bcgen
Common Name   B-hOX40/hOX40L mice
Background C57BL/6 Catalog number  120543
Related Genes 

TNFRSF4(Tumor necrosis factor receptor superfamily, member 4, also known as OX40);

TNFSF4 ( tumor necrosis factor(TNF) superfamily member 4, also known as OX40L)

NCBI Gene ID
22163,22164

Targeting strategy


Gene targeting strategy for B-hOX40/hOX40L mice. The exons 1-5 of mouse OX40 gene that  encode the extracellular domain were replaced by human OX40 exons 1-5 in B-hOX40/hOX40L mice. The exons 2-3 of mouse Ox40l gene that  encode the extracellular region were replaced by human OX40L exons 2-3 in B-hOX40/hOX40L mice . 



Protein expression analysis


from clipboard


Strain specific analysis of OX40L gene expression in WT and B-hOX40/hOX40L mice by RT-PCR. (B)Mouse Ox40l mRNA was detectable in DC cell of wild-type (+/+) . Human OX40L mRNA was detectable only in B-hOX40/hOX40L (H/H) but not in +/+ mice. 

from clipboard


Strain specific OX40 expression analysis in homozygous B-hOX40/hOX40L mice by flow cytometry. Splenocytes were collected from WT and homozygous B-hOX40/hOX40L (H/H) mice stimulated with anti-CD3ε in vivo, and analyzed by flow cytometry with species-specific anti-OX40 antibody. Mouse OX40 was detectable in WT mice. Human OX40 was exclusively detectable in homozygous B-hOX40/hOX40L (H/H) but not WT mice. 

from clipboard


Strain specific OX40L expression analysis in homozygous B-hOX40/hOX40L mice by flow cytometry. (A)Bone marrow cells were collected from WT and homozygous B-hOX40/hOX40L (H/H) mice. DCs were induced from bone marrow cells and stimulated with LPS. Then DCs were analyzed by flow cytometry with anti-OX40L antibodies. Mouse OX40L was detectable in WT mice. Human OX40L was exclusively detectable in homozygous B-hOX40/hOX40L (H/H) but  not  WT mice.


Analysis of spleen leukocytes cell subpopulations in B-hOX40/hOX40L mice


from clipboard


Analysis of spleen leukocyte subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hOX40/hOX40L mice (n=3, 6-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hOX40/hOX40L mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hOX40/hOX40L in place of its mouse counterpart does not change the overall development, differentiation or distribution of these cell types in spleen. Values are expressed as mean ± SEM.

Analysis of spleen T cell subpopulations in B-hOX40/hOX40L mice


from clipboard

Analysis of spleen T cell subpopulations by FACS. Splenocytes were isolated from female C57BL/6 and B-hOX40/hOX40L mice (n=3, 6-week-old). Flow cytometry analysis of the splenocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD8+ T cells, CD4+ T cells, and Tregs in homozygous B-hOX40/hOX40L mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hOX40/hOX40L in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in spleen. Values are expressed as mean ± SEM.




Analysis of blood leukocytes cell subpopulations in B-hOX40/hOX40L mice

from clipboard

Analysis of blood leukocyte subpopulations by FACS. Blood cells were isolated from female C57BL/6 and B-hOX40/hOX40L mice (n=5, 6-week-old). Flow cytometry analysis of the blood cell was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells, dendritic cells, granulocytes, monocytes and macrophages in homozygous B-hOX40/hOX40L mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hOX40/hOX40L in place of its mouse counterpart does not change the overall development, differentiation or distribution of these cell types in blood. Values are expressed as mean ± SEM.


Analysis of blood leukocytes cell subpopulations in B-hOX40/hOX40L mice

from clipboard

Analysis of blood T cell subpopulations by FACS. Blood cells were isolated from female C57BL/6 and B-hOX40/hOX40L mice (n=3, 6-week-old).  Flow cytometry analysis of the blood was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD8+ T cells, CD4+ T cells, and Tregs in homozygous B-hOX40/hOX40L mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hOX40/hOX40L in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in blood. Values are expressed as mean ± SEM.


Analysis of lymph node leukocytes cell subpopulations in B-hOX40/hOX40L mice




from clipboard

Analysis of lymph node leukocyte subpopulations by FACS. Lymph nodes were isolated from female C57BL/6 and B-hOX40/hOX40L mice (n=3, 6-week-old). Flow cytometry analysis of the leukocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live cells were gated for the CD45+ population and used for further analysis as indicated here. B. Results of FACS analysis. Percent of T cells, B cells, NK cells in homozygous B-hOX40/hOX40L mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hOX40/hOX40L in place of its mouse counterpart does not change the overall development, differentiation or distribution of these cell types in lymph node. Values are expressed as mean ± SEM.


Analysis of lymph node T cell subpopulations in B-hOX40/hOX40L mice



from clipboard


Analysis of lymph node T cell subpopulations by FACS. Lymph nodes were isolated from female C57BL/6 and B-hOX40/hOX40L mice (n=3, 6-week-old). Flow cytometry analysis of the leukocytes was performed to assess leukocyte subpopulations. A. Representative FACS plots. Single live CD45+ cells were gated for TCRβ+ T cell population and used for further analysis as indicated here. B. Results of FACS analysis. The percent of CD8+ T cells, CD4+ T cells, and Tregs in homozygous B-hOX40/hOX40L mice were similar to those in the C57BL/6 mice, demonstrating that introduction of hOX40/hOX40L in place of its mouse counterpart does not change the overall development, differentiation or distribution of these T cell subtypes in lymph node. Values are expressed as mean ± SEM.